加入收藏 | 设为首页 | 会员中心 | 我要投稿 宜春站长网 (https://www.0795zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

认识人和鱼的AI,能识别美人鱼吗?阿里CVPR论文因果推理回复

发布时间:2021-06-05 17:18:16 所属栏目:大数据 来源:互联网
导读:学过人类照片和鱼类照片的 AI,第一次见到美人鱼的照片会作何反应?人脸和鱼身它都很熟悉,但它无法想象一个从没见过的事物。近期,阿里巴巴达摩院将因果推理方法引入计算机视觉领域,尝试克服机器学习方法的缺陷,让 AI 想象从未见过的事物,相关论文已被计
学过人类照片和鱼类照片的 AI,第一次见到美人鱼的照片会作何反应?人脸和鱼身它都很熟悉,但它无法想象一个从没见过的事物。近期,阿里巴巴达摩院将因果推理方法引入计算机视觉领域,尝试克服机器学习方法的缺陷,让 AI 想象从未见过的事物,相关论文已被计算机视觉顶会 CVPR 2021 收录。
认识人和鱼的AI,能识别美人鱼吗?阿里CVPR论文因果推理方法解答
论文链接:
https://arxiv.org/pdf/2103.00887.pdf
代码链接:
https://github.com/yue-zhongqi/gcm-cf
计算机视觉(CV,Computer Vision)是研究如何让机器「看」的科学,通过将非结构化的图像和视频数据进行结构化的特征表达,让 AI 理解视觉信息。深度学习出现后,AI 在 CV 领域的很多任务上表现出了超越人类的能力。不过,比起人类的视觉理解能力,AI 仍是非常「低维」的存在。
通过人和鱼的形象来想象美人鱼,对人来说轻而易举,AI 却极有可能把美人鱼胡乱归入「人」或「鱼」中的一类。因为它们缺乏「想象」这一高级别认知能力。现阶段的机器学习技术本质是通过观测数据进行拟合,这导致 AI 只认得学过的事物,遇到超越训练数据的对象,往往容易陷入「人工智障」。
图灵奖得主、因果关系演算法创立者朱迪 · 珀尔认为,人类的想象能力源于我们自带因果推理技能的大脑。人类善问「为什么」,也就是寻求事物的因果关系。借助这套认知系统,我们用「小数据」就能处理现实世界无限的「大任务」。而 AI 却只能用「大数据」来处理「小任务」,如果 AI 能够学会因果推理,就有望打破「智商天花板」,甚至通向强人工智能。
因果推理理论极大地启发了研究者,其与机器学习的结合日益受到关注。在工业界,达摩院城市大脑实验室最早将因果推理方法引入 CV 领域,用因果推理模型赋能机器学习模型,让视觉 AI 更智能。今年,该团队与南洋理工大学合作了《反事实的零次和开集识别》(Counterfactual Zero-Shot and Open-Set Visual Recognition)等三篇采用因果推理方法的论文,均被 CVPR 2021 收录。
认识人和鱼的AI,能识别美人鱼吗?阿里CVPR论文因果推理方法解答
左为现有方法的 AI「想象」结果,中为达摩院论文提出的算法核心,右为基于达摩院框架完成的想象结果。在左右二图中,红色代表训练集里面的样本,蓝色是 AI 未见过类别的样本,绿色是 AI 对未见过类别的想象。
零次学习是指让机器分类没见过的对象类别,开集识别要求让机器把没见过的对象类别标成「不认识」,两个任务都依赖想象能力。《反事实的零次和开集识别》提出了一种基于反事实的算法框架,通过解耦样本特征(比如对象的姿势)和类别特征(比如是否有羽毛),再基于样本特征进行反事实生成。在常用数据集上,该算法的准确率超出现有顶尖方法 2.2% 到 4.3%。论文作者岳中琪指出,AI 认知智能的进化刚刚开始,业界的探索仍处在早期阶段,今后他们将不断提升和优化相关算法。
城市大脑实验室介绍称,数据驱动的机器学习模型普遍面临数据不均衡问题,「以城市为例,它的信息呈长尾分布,相比海量的正常信息,交通事故、车辆违规、突发灾害等异常信息的发生概率很小,样本稀少,尽管可以通过大量增加少见样本的办法来部分解决问题,但这么做成本高、效率低。」
基于自研算法,只需使用正常信息样本,就能让 AI 获得无偏见的异常检测结果。一旦出现紧急情况,比如某辆车和某个行人发生异常交互,城市大脑不必不懂装懂或视而不见,而是可以实时识别和反馈信息。」未来,这一技术有望应用于城市基础视觉算法体系优化、极少样本城市异常事件感知能力优化乃至多模态语义搜索、智能图文生成等领域。
CVPR 是计算机视觉领域三大顶会之一,CVPR 2021 会议将于 6 月 19 日至 25 日在线举行。今年大会收录论文 1663 篇,接受率 27%。阿里巴巴集团入选论文 41 篇,是 2020 年的 2.6 倍。
在下文中,《反事实的零次和开集识别》论文一作岳中琪对他们的论文进行了解析。

(编辑:宜春站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读